Artículo
Heavy Tailed Approximate Identities and σ-stable Markov Kernels
Fecha de publicación:
05/2018
Editorial:
Springer
Revista:
Potential Analysis
ISSN:
0926-2601
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this paper is to present some results relating the properties of stability, concentration and approximation to the identity of convolution through not necessarily mollification type families of heavy tailed Markov kernels. A particular case is provided by the kernels Kt obtained as the t mollification of Lσ(t) selected from the family ℒ={Lσ:L=e−|ξ|σ,02}, by a given function σ with values in the interval (0,2). We show that a basic Harnack type inequality, introduced by C. Calderón in the convolution case, becomes at once natural to the setting and useful to connect the concepts of stability, concentration and approximation of the identity. Some of the general results are extended to spaces of homogeneous type since most of the concepts involved in the theory are given in terms of metric and measure.
Palabras clave:
Approximate Identities
,
Spaces of Homogeneous Type
,
Stable Processes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Morana, Federico Maximiliano; Heavy Tailed Approximate Identities and σ-stable Markov Kernels; Springer; Potential Analysis; 48; 4; 5-2018; 473-493
Compartir
Altmétricas