Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez Sau, Mercedes
dc.contributor.author
Rodriguez, Daniela Andrea
dc.date.available
2018-08-15T11:17:15Z
dc.date.issued
2017-06
dc.identifier.citation
Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea; Minimum distance method for directional data and outlier detection; Springer Verlag Berlín; Advances in Data Analysis and Classification; 6-2017; 1-17
dc.identifier.issn
1862-5347
dc.identifier.uri
http://hdl.handle.net/11336/55569
dc.description.abstract
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Asymptotic Properties
dc.subject
Directional Data
dc.subject
Outlier Detection
dc.subject
Robust Estimation
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Minimum distance method for directional data and outlier detection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T14:12:53Z
dc.identifier.eissn
1862-5355
dc.journal.pagination
1-17
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Fernandez Sau, Mercedes. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Advances in Data Analysis and Classification
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11634-017-0287-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11634-017-0287-9
Archivos asociados