Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Sau, Mercedes  
dc.contributor.author
Rodriguez, Daniela Andrea  
dc.date.available
2018-08-15T11:17:15Z  
dc.date.issued
2017-06  
dc.identifier.citation
Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea; Minimum distance method for directional data and outlier detection; Springer Verlag Berlín; Advances in Data Analysis and Classification; 6-2017; 1-17  
dc.identifier.issn
1862-5347  
dc.identifier.uri
http://hdl.handle.net/11336/55569  
dc.description.abstract
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Asymptotic Properties  
dc.subject
Directional Data  
dc.subject
Outlier Detection  
dc.subject
Robust Estimation  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Minimum distance method for directional data and outlier detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:12:53Z  
dc.identifier.eissn
1862-5355  
dc.journal.pagination
1-17  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Fernandez Sau, Mercedes. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Advances in Data Analysis and Classification  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11634-017-0287-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11634-017-0287-9