Artículo
Minimum distance method for directional data and outlier detection
Fecha de publicación:
06/2017
Editorial:
Springer Verlag Berlín
Revista:
Advances in Data Analysis and Classification
ISSN:
1862-5347
e-ISSN:
1862-5355
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea; Minimum distance method for directional data and outlier detection; Springer Verlag Berlín; Advances in Data Analysis and Classification; 6-2017; 1-17
Compartir
Altmétricas