Mostrar el registro sencillo del ítem
dc.contributor.author
Cucker, Felipe
dc.contributor.author
Krick, Teresa Elena Genoveva
dc.contributor.author
Shub, Michael Ira
dc.date.available
2018-08-15T11:16:19Z
dc.date.issued
2018-08
dc.identifier.citation
Cucker, Felipe; Krick, Teresa Elena Genoveva; Shub, Michael Ira; Computing the Homology of Real Projective Sets; Springer; Foundations Of Computational Mathematics; 18; 4; 8-2018; 929-970
dc.identifier.issn
1615-3375
dc.identifier.uri
http://hdl.handle.net/11336/55564
dc.description.abstract
We describe and analyze a numerical algorithm for computing the homology (Betti numbers and torsion coefficients) of real projective varieties. Here numerical means that the algorithm is numerically stable (in a sense to be made precise). Its cost depends on the condition of the input as well as on its size and is singly exponential in the number of variables (the dimension of the ambient space) and polynomial in the condition and the degrees of the defining polynomials. In addition, we show that outside of an exceptional set of measure exponentially small in the size of the data, the algorithm takes exponential time.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Complexity
dc.subject
Condition
dc.subject
Exponential Time
dc.subject
Homology Groups
dc.subject
Real Projective Varieties
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Computing the Homology of Real Projective Sets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T14:01:41Z
dc.journal.volume
18
dc.journal.number
4
dc.journal.pagination
929-970
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Cucker, Felipe. City University Of Hong Kong; Hong Kong
dc.description.fil
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
dc.description.fil
Fil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. City University of New York; Estados Unidos
dc.journal.title
Foundations Of Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10208-017-9358-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10208-017-9358-8
Archivos asociados