Artículo
Computing the Homology of Real Projective Sets
Fecha de publicación:
08/2018
Editorial:
Springer
Revista:
Foundations Of Computational Mathematics
ISSN:
1615-3375
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We describe and analyze a numerical algorithm for computing the homology (Betti numbers and torsion coefficients) of real projective varieties. Here numerical means that the algorithm is numerically stable (in a sense to be made precise). Its cost depends on the condition of the input as well as on its size and is singly exponential in the number of variables (the dimension of the ambient space) and polynomial in the condition and the degrees of the defining polynomials. In addition, we show that outside of an exceptional set of measure exponentially small in the size of the data, the algorithm takes exponential time.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cucker, Felipe; Krick, Teresa Elena Genoveva; Shub, Michael Ira; Computing the Homology of Real Projective Sets; Springer; Foundations Of Computational Mathematics; 18; 4; 8-2018; 929-970
Compartir
Altmétricas