Mostrar el registro sencillo del ítem

dc.contributor.author
Aldroubi, A.  
dc.contributor.author
Cabrelli, Carlos  
dc.contributor.author
Molter, Ursula Maria  
dc.contributor.author
Tang, S.  
dc.date.available
2018-08-15T04:04:55Z  
dc.date.issued
2017-05  
dc.identifier.citation
Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.; Dynamical sampling; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 42; 3; 5-2017; 378-401  
dc.identifier.issn
1063-5203  
dc.identifier.uri
http://hdl.handle.net/11336/55536  
dc.description.abstract
Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Carleson'S Theorem  
dc.subject
Feichtinger Conjecture  
dc.subject
Frames  
dc.subject
Müntz–Szász Theorem  
dc.subject
Reconstruction  
dc.subject
Sampling Theory  
dc.subject
Sub-Sampling  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Dynamical sampling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T13:57:35Z  
dc.journal.volume
42  
dc.journal.number
3  
dc.journal.pagination
378-401  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Aldroubi, A.. Vanderbilt University; Estados Unidos  
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Tang, S.. Vanderbilt University; Estados Unidos  
dc.journal.title
Applied And Computational Harmonic Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001177  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.acha.2015.08.014