Mostrar el registro sencillo del ítem
dc.contributor.author
Aldroubi, A.
dc.contributor.author
Cabrelli, Carlos
dc.contributor.author
Molter, Ursula Maria
dc.contributor.author
Tang, S.
dc.date.available
2018-08-15T04:04:55Z
dc.date.issued
2017-05
dc.identifier.citation
Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.; Dynamical sampling; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 42; 3; 5-2017; 378-401
dc.identifier.issn
1063-5203
dc.identifier.uri
http://hdl.handle.net/11336/55536
dc.description.abstract
Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Carleson'S Theorem
dc.subject
Feichtinger Conjecture
dc.subject
Frames
dc.subject
Müntz–Szász Theorem
dc.subject
Reconstruction
dc.subject
Sampling Theory
dc.subject
Sub-Sampling
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Dynamical sampling
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T13:57:35Z
dc.journal.volume
42
dc.journal.number
3
dc.journal.pagination
378-401
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Aldroubi, A.. Vanderbilt University; Estados Unidos
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Tang, S.. Vanderbilt University; Estados Unidos
dc.journal.title
Applied And Computational Harmonic Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001177
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.acha.2015.08.014
Archivos asociados