Artículo
Dynamical sampling
Fecha de publicación:
05/2017
Editorial:
Academic Press Inc Elsevier Science
Revista:
Applied And Computational Harmonic Analysis
ISSN:
1063-5203
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.; Dynamical sampling; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 42; 3; 5-2017; 378-401
Compartir
Altmétricas