Artículo
Turing instability in a model with two interacting Ising lines: hydrodynamic limit
Fecha de publicación:
10/2017
Editorial:
Polymat Publishing Company
Revista:
Markov Processes And Related Fields
ISSN:
1024-2953
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This is the first of two articles on the study of a particle system model that exhibits a Turing instability type effect. The model is based on two discrete lines (or toruses) with Ising spins, that evolve according to a continuous time Markov process defined in terms of macroscopic Kac potentials and local interactions. For fixed time, we prove that the density fields weakly converge to the solution of a system of partial differential equations involving convolutions. The presence of local interactions results in the lack of propagation of chaos, reason why the hydrodynamic limit cannot be obtained from previous results.
Palabras clave:
Hydrodynamic Limit
,
Kac Potential
,
Glauber Dynamic
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Capanna, Monia; Soprano Loto, Nahuel; Turing instability in a model with two interacting Ising lines: hydrodynamic limit; Polymat Publishing Company; Markov Processes And Related Fields; 23; 3; 10-2017; 401-420
Compartir