Mostrar el registro sencillo del ítem

dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Herrero, Maria Isabel  
dc.contributor.author
Tabera, Luis Felipe  
dc.date.available
2018-08-14T21:17:57Z  
dc.date.issued
2017-09  
dc.identifier.citation
Dickenstein, Alicia Marcela; Herrero, Maria Isabel; Tabera, Luis Felipe; Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials; Hebrew Univ Magnes Press; Israel Journal Of Mathematics; 221; 2; 9-2017; 741-777  
dc.identifier.issn
0021-2172  
dc.identifier.uri
http://hdl.handle.net/11336/55513  
dc.description.abstract
We give a description of the tropical Severi variety of univariate polynomials of degree n having two double roots. We show that, as a set, it is given as the union of three explicit types of cones of maximal dimension n − 1, where only cones of two of these types are cones of the secondary fan of {0,.., n}. Through Kapranov’s theorem, this goal is achieved by a careful study of the possible valuations of the elementary symmetric functions of the roots of a polynomial with two double roots. Despite its apparent simplicity, the computation of the tropical Severi variety has both combinatorial and arithmetic ingredients.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Hebrew Univ Magnes Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Geometria Tropical  
dc.subject
Variedades de Severi  
dc.subject
Singular Varieties  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:01:50Z  
dc.journal.volume
221  
dc.journal.number
2  
dc.journal.pagination
741-777  
dc.journal.pais
Israel  
dc.journal.ciudad
Jerusalem  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.description.fil
Fil: Herrero, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.description.fil
Fil: Tabera, Luis Felipe. Universidad de Cantabria; España  
dc.journal.title
Israel Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11856-017-1573-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11856-017-1573-0