Artículo
Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials
Fecha de publicación:
09/2017
Editorial:
Hebrew Univ Magnes Press
Revista:
Israel Journal Of Mathematics
ISSN:
0021-2172
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give a description of the tropical Severi variety of univariate polynomials of degree n having two double roots. We show that, as a set, it is given as the union of three explicit types of cones of maximal dimension n − 1, where only cones of two of these types are cones of the secondary fan of {0,.., n}. Through Kapranov’s theorem, this goal is achieved by a careful study of the possible valuations of the elementary symmetric functions of the roots of a polynomial with two double roots. Despite its apparent simplicity, the computation of the tropical Severi variety has both combinatorial and arithmetic ingredients.
Palabras clave:
Geometria Tropical
,
Variedades de Severi
,
Singular Varieties
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dickenstein, Alicia Marcela; Herrero, Maria Isabel; Tabera, Luis Felipe; Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials; Hebrew Univ Magnes Press; Israel Journal Of Mathematics; 221; 2; 9-2017; 741-777
Compartir
Altmétricas