Mostrar el registro sencillo del ítem

dc.contributor.author
Baroncini, Carla Antonella  
dc.contributor.author
Fernandez Bonder, Julian  
dc.date.available
2018-08-14T19:05:54Z  
dc.date.issued
2015-09  
dc.identifier.citation
Baroncini, Carla Antonella; Fernandez Bonder, Julian; An extension of a theorem of V. Šverák to variable exponent spaces; American Institute of Mathematical Sciences; Communications On Pure And Applied Analysis; 14; 5; 9-2015; 1987-2007  
dc.identifier.issn
1534-0392  
dc.identifier.uri
http://hdl.handle.net/11336/55467  
dc.description.abstract
In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ωn ℝ2 such that Ωn → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nonstandard Growth  
dc.subject
Sensitivity Analysis  
dc.subject
Shape Optimization  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An extension of a theorem of V. Šverák to variable exponent spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T13:58:59Z  
dc.journal.volume
14  
dc.journal.number
5  
dc.journal.pagination
1987-2007  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Springfield  
dc.description.fil
Fil: Baroncini, Carla Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.description.fil
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.journal.title
Communications On Pure And Applied Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/article/doi/10.3934/cpaa.2015.14.1987  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/cpaa.2015.14.1987