Artículo
An extension of a theorem of V. Šverák to variable exponent spaces
Fecha de publicación:
09/2015
Editorial:
American Institute of Mathematical Sciences
Revista:
Communications On Pure And Applied Analysis
ISSN:
1534-0392
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ωn ℝ2 such that Ωn → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces.
Palabras clave:
Nonstandard Growth
,
Sensitivity Analysis
,
Shape Optimization
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Baroncini, Carla Antonella; Fernandez Bonder, Julian; An extension of a theorem of V. Šverák to variable exponent spaces; American Institute of Mathematical Sciences; Communications On Pure And Applied Analysis; 14; 5; 9-2015; 1987-2007
Compartir
Altmétricas