Mostrar el registro sencillo del ítem

dc.contributor.author
Blanc, Pablo  
dc.contributor.author
Pinasco, Juan Pablo  
dc.contributor.author
Rossi, Julio Daniel  
dc.date.available
2018-08-14T17:44:27Z  
dc.date.issued
2016-01  
dc.identifier.citation
Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Obstacle problem and maximal operators; De Gruyter; Advanced Nonlinear Studies; 16; 2; 1-2016; 355-362  
dc.identifier.issn
1536-1365  
dc.identifier.uri
http://hdl.handle.net/11336/55423  
dc.description.abstract
Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tug of War  
dc.subject
Maximal Operators  
dc.subject
Obstable Problem  
dc.subject
Fully Nonlinear Operators  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Obstacle problem and maximal operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:00:29Z  
dc.journal.volume
16  
dc.journal.number
2  
dc.journal.pagination
355-362  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Antonio  
dc.description.fil
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.journal.title
Advanced Nonlinear Studies  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ans-2015-5044  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.ahead-of-print/ans-2015-5044/ans-2015-5044.xml