Mostrar el registro sencillo del ítem
dc.contributor.author
Blanc, Pablo
dc.contributor.author
Pinasco, Juan Pablo
dc.contributor.author
Rossi, Julio Daniel
dc.date.available
2018-08-14T17:44:27Z
dc.date.issued
2016-01
dc.identifier.citation
Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Obstacle problem and maximal operators; De Gruyter; Advanced Nonlinear Studies; 16; 2; 1-2016; 355-362
dc.identifier.issn
1536-1365
dc.identifier.uri
http://hdl.handle.net/11336/55423
dc.description.abstract
Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Tug of War
dc.subject
Maximal Operators
dc.subject
Obstable Problem
dc.subject
Fully Nonlinear Operators
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Obstacle problem and maximal operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T14:00:29Z
dc.journal.volume
16
dc.journal.number
2
dc.journal.pagination
355-362
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Antonio
dc.description.fil
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
dc.journal.title
Advanced Nonlinear Studies
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ans-2015-5044
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.ahead-of-print/ans-2015-5044/ans-2015-5044.xml
Archivos asociados