Artículo
Obstacle problem and maximal operators
Fecha de publicación:
01/2016
Editorial:
De Gruyter
Revista:
Advanced Nonlinear Studies
ISSN:
1536-1365
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω.
Palabras clave:
Tug of War
,
Maximal Operators
,
Obstable Problem
,
Fully Nonlinear Operators
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Obstacle problem and maximal operators; De Gruyter; Advanced Nonlinear Studies; 16; 2; 1-2016; 355-362
Compartir
Altmétricas