Mostrar el registro sencillo del ítem
dc.contributor.author
da Silva, Adenilton C.
dc.contributor.author
Soares, Sófacles F.C.
dc.contributor.author
Insausti, Matías
dc.contributor.author
Galvão, Roberto K.H.
dc.contributor.author
Fernández Band, Beatriz Susana
dc.contributor.author
de Araujo, Mário César U.
dc.date.available
2018-08-09T15:16:37Z
dc.date.issued
2016-09-28
dc.identifier.citation
da Silva, Adenilton C.; Soares, Sófacles F.C.; Insausti, Matías; Galvão, Roberto K.H.; Fernández Band, Beatriz Susana; et al.; Two-dimensional linear discriminant analysis for classification of three-way chemical data; Elsevier Science; Analytica Chimica Acta; 938; 28-9-2016; 53-62
dc.identifier.issn
0003-2670
dc.identifier.uri
http://hdl.handle.net/11336/54772
dc.description.abstract
The two-dimensional linear discriminant analysis (2D-LDA) algorithm was originally proposed in the context of face image processing for the extraction of features with maximal discriminant power. However, despite its promising performance in image processing tasks, the 2D-LDA algorithm has not yet been used in applications involving chemical data. The present paper bridges this gap by investigating the use of 2D-LDA in classification problems involving three-way spectral data. The investigation was concerned with simulated data, as well as real-life data sets involving the classification of dry-cured Parma ham according to ageing by surface autofluorescence spectrometry and the classification of edible vegetable oils according to feedstock using total synchronous fluorescence spectrometry. The results were compared with those obtained by using the spectral data with no feature extraction, U-PLS-DA (Partial Least Squares Discriminant Analysis applied to the unfolded data), and LDA employing TUCKER-3 or PARAFAC scores. In the simulated data set, all methods yielded a correct classification rate of 100%. However, in the Parma ham and vegetable oil data sets, better classification rates were obtained by using 2D-LDA (86% and 100%), compared with no feature extraction (76% and 77%), U-PLS-DA (81% and 92%), PARAFAC-LDA (76% and 86%) and TUCKER3-LDA (86% and 93%).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Dry-Cured Parma Ham
dc.subject
Edible Vegetable Oil
dc.subject
Parafac-Lda
dc.subject
Three-Way Fluorescence Data
dc.subject
Tucker3-Lda
dc.subject
Two-Dimensional Linear Discriminant Analysis
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Two-dimensional linear discriminant analysis for classification of three-way chemical data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-01T14:28:15Z
dc.journal.volume
938
dc.journal.pagination
53-62
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: da Silva, Adenilton C.. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Soares, Sófacles F.C.. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Insausti, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Galvão, Roberto K.H.. Instituto Tecnológico de Aeronáutica; Brasil. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: de Araujo, Mário César U.. Universidade Federal da Paraíba; Brasil
dc.journal.title
Analytica Chimica Acta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000326701630914X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aca.2016.08.009
Archivos asociados