Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Two-dimensional linear discriminant analysis for classification of three-way chemical data

da Silva, Adenilton C.; Soares, Sófacles F.C.; Insausti, MatíasIcon ; Galvão, Roberto K.H.; Fernández Band, Beatriz SusanaIcon ; de Araujo, Mário César U.
Fecha de publicación: 28/09/2016
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

The two-dimensional linear discriminant analysis (2D-LDA) algorithm was originally proposed in the context of face image processing for the extraction of features with maximal discriminant power. However, despite its promising performance in image processing tasks, the 2D-LDA algorithm has not yet been used in applications involving chemical data. The present paper bridges this gap by investigating the use of 2D-LDA in classification problems involving three-way spectral data. The investigation was concerned with simulated data, as well as real-life data sets involving the classification of dry-cured Parma ham according to ageing by surface autofluorescence spectrometry and the classification of edible vegetable oils according to feedstock using total synchronous fluorescence spectrometry. The results were compared with those obtained by using the spectral data with no feature extraction, U-PLS-DA (Partial Least Squares Discriminant Analysis applied to the unfolded data), and LDA employing TUCKER-3 or PARAFAC scores. In the simulated data set, all methods yielded a correct classification rate of 100%. However, in the Parma ham and vegetable oil data sets, better classification rates were obtained by using 2D-LDA (86% and 100%), compared with no feature extraction (76% and 77%), U-PLS-DA (81% and 92%), PARAFAC-LDA (76% and 86%) and TUCKER3-LDA (86% and 93%).
Palabras clave: Dry-Cured Parma Ham , Edible Vegetable Oil , Parafac-Lda , Three-Way Fluorescence Data , Tucker3-Lda , Two-Dimensional Linear Discriminant Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.521Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/54772
URL: https://www.sciencedirect.com/science/article/pii/S000326701630914X
DOI: http://dx.doi.org/10.1016/j.aca.2016.08.009
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
da Silva, Adenilton C.; Soares, Sófacles F.C.; Insausti, Matías; Galvão, Roberto K.H.; Fernández Band, Beatriz Susana; et al.; Two-dimensional linear discriminant analysis for classification of three-way chemical data; Elsevier Science; Analytica Chimica Acta; 938; 28-9-2016; 53-62
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES