Artículo
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
Falomir, Horacio Alberto
; González Pisani, Pablo Andrés
; Vega, Federico Gaspar
; Cárcamo, D.; Méndez, F.; Loewe, M.
Fecha de publicación:
01/2016
Editorial:
IOP Publishing
Revista:
Journal of Physics A: Mathematical and Theoretical
ISSN:
1751-8113
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ?) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; et al.; On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 1; 1-2016; 55202-55248
Compartir
Altmétricas