Mostrar el registro sencillo del ítem

dc.contributor.author
Orlando, José Ignacio  
dc.contributor.author
Van Keer, Karel  
dc.contributor.author
Barbosa Breda, João  
dc.contributor.author
Manterola, Hugo Luis  
dc.contributor.author
Blaschko, Matthew B.  
dc.contributor.author
Clausse, Alejandro  
dc.date.available
2018-08-03T18:44:25Z  
dc.date.issued
2017-12  
dc.identifier.citation
Orlando, José Ignacio; Van Keer, Karel; Barbosa Breda, João; Manterola, Hugo Luis; Blaschko, Matthew B.; et al.; Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset: Evaluation; American Association of Physicists in Medicine; Medical Physics; 44; 12; 12-2017; 6425-6434  
dc.identifier.issn
0094-2405  
dc.identifier.uri
http://hdl.handle.net/11336/54111  
dc.description.abstract
Purpose: Diabetic retinopathy (DR) is one of the most widespread causes of preventable blindness in the world. The most dangerous stage of this condition is proliferative DR (PDR), in which the risk of vision loss is high and treatments are less effective. Fractal features of the retinal vasculature have been previously explored as potential biomarkers of DR, yet the current literature is inconclusive with respect to their correlation with PDR. In this study, we experimentally assess their discrimination ability to recognize PDR cases. Methods: A statistical analysis of the viability of using three reference fractal characterization schemes - namely box, information, and correlation dimensions - to identify patients with PDR is presented. These descriptors are also evaluated as input features for training ℓ1 and ℓ2 regularized logistic regression classifiers, to estimate their performance. Results: Our results on MESSIDOR, a public dataset of 1200 fundus photographs, indicate that patients with PDR are more likely to exhibit a higher fractal dimension than healthy subjects or patients with mild levels of DR (P≤1.3×10-2). Moreover, a supervised classifier trained with both fractal measurements and red lesion-based features reports an area under the ROC curve of 0.93 for PDR screening and 0.96 for detecting patients with optic disc neovascularizations. Conclusions: The fractal dimension of the vasculature increases with the level of DR. Furthermore, PDR screening using multiscale fractal measurements is more feasible than using their derived fractal dimensions. Code and further resources are provided at https://github.com/ignaciorlando/fundus-fractal-analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Association of Physicists in Medicine  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fractal Dimension  
dc.subject
Fundus Imaging  
dc.subject
Machine Learning  
dc.subject
Proliferative Diabetic Retinopathy  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset: Evaluation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-16T13:46:40Z  
dc.journal.volume
44  
dc.journal.number
12  
dc.journal.pagination
6425-6434  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hoboken  
dc.description.fil
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Van Keer, Karel. UZ Leuven; Bélgica  
dc.description.fil
Fil: Barbosa Breda, João. UZ Leuven; Bélgica  
dc.description.fil
Fil: Manterola, Hugo Luis. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Blaschko, Matthew B.. Katholikie Universiteit Leuven; Bélgica  
dc.description.fil
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.journal.title
Medical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12627  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mp.12627