Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset: Evaluation

Orlando, José IgnacioIcon ; Van Keer, Karel; Barbosa Breda, João; Manterola, Hugo LuisIcon ; Blaschko, Matthew B.; Clausse, AlejandroIcon
Fecha de publicación: 12/2017
Editorial: American Association of Physicists in Medicine
Revista: Medical Physics
ISSN: 0094-2405
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Médica

Resumen

Purpose: Diabetic retinopathy (DR) is one of the most widespread causes of preventable blindness in the world. The most dangerous stage of this condition is proliferative DR (PDR), in which the risk of vision loss is high and treatments are less effective. Fractal features of the retinal vasculature have been previously explored as potential biomarkers of DR, yet the current literature is inconclusive with respect to their correlation with PDR. In this study, we experimentally assess their discrimination ability to recognize PDR cases. Methods: A statistical analysis of the viability of using three reference fractal characterization schemes - namely box, information, and correlation dimensions - to identify patients with PDR is presented. These descriptors are also evaluated as input features for training ℓ1 and ℓ2 regularized logistic regression classifiers, to estimate their performance. Results: Our results on MESSIDOR, a public dataset of 1200 fundus photographs, indicate that patients with PDR are more likely to exhibit a higher fractal dimension than healthy subjects or patients with mild levels of DR (P≤1.3×10-2). Moreover, a supervised classifier trained with both fractal measurements and red lesion-based features reports an area under the ROC curve of 0.93 for PDR screening and 0.96 for detecting patients with optic disc neovascularizations. Conclusions: The fractal dimension of the vasculature increases with the level of DR. Furthermore, PDR screening using multiscale fractal measurements is more feasible than using their derived fractal dimensions. Code and further resources are provided at https://github.com/ignaciorlando/fundus-fractal-analysis.
Palabras clave: Fractal Dimension , Fundus Imaging , Machine Learning , Proliferative Diabetic Retinopathy
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.067Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/54111
URL: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12627
DOI: http://dx.doi.org/10.1002/mp.12627
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Orlando, José Ignacio; Van Keer, Karel; Barbosa Breda, João; Manterola, Hugo Luis; Blaschko, Matthew B.; et al.; Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset: Evaluation; American Association of Physicists in Medicine; Medical Physics; 44; 12; 12-2017; 6425-6434
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES