Mostrar el registro sencillo del ítem
dc.contributor.author
Pianzola, Arturo
dc.contributor.author
Prelat, Daniel
dc.contributor.author
Sepp, Claudia
dc.date.available
2018-07-25T18:54:52Z
dc.date.issued
2017-11
dc.identifier.citation
Pianzola, Arturo; Prelat, Daniel; Sepp, Claudia; Standard cocycles: Variations on themes of C. Kassel's and R. Wilson's; De Gruyter; Forum Mathematicum; 29; 6; 11-2017; 1441-1461
dc.identifier.issn
0933-7741
dc.identifier.uri
http://hdl.handle.net/11336/53120
dc.description.abstract
Central extensions of Lie algebras can be understood and classified by means of 2-cocycles. The Lie algebras we are interested in are "twisted forms" (defined by Galois descent) of algebras of the form g⊗ kR with g split finite-dimensional simple over a base field k of characteristic 0 and R a commutative unital and associative k-algebra (such algebras are ubiquitous in modern infinite-dimensional Lie theory). We introduce a special type of cocycle that we called standard. Our main result shows that any cocycle is cohomologous to a unique standard cocycle. As an application we give a precise description of the universal central extension of the twisted forms of g⊗ kR mentioned above. This yields a new proof of a classic theorem of C. Kassel [8]. For multiloop algebras, we obtain a "twisted" version of Kassel's result (which is due to R. Wilson [21] in the case of the affine Kac-Moody Lie algebras).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Central Extensions of Lie Algebras
dc.subject
Galois Descent
dc.subject
Multiloop Algebras
dc.subject
Standard Cocycle
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Standard cocycles: Variations on themes of C. Kassel's and R. Wilson's
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-25T13:55:08Z
dc.journal.volume
29
dc.journal.number
6
dc.journal.pagination
1441-1461
dc.journal.pais
Alemania
dc.description.fil
Fil: Pianzola, Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina
dc.description.fil
Fil: Prelat, Daniel. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina
dc.description.fil
Fil: Sepp, Claudia. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Forum Mathematicum
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/forum.2017.29.issue-6/forum-2016-0148/forum-2016-0148.xml
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/forum-2016-0148
Archivos asociados