Artículo
Standard cocycles: Variations on themes of C. Kassel's and R. Wilson's
Fecha de publicación:
11/2017
Editorial:
De Gruyter
Revista:
Forum Mathematicum
ISSN:
0933-7741
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Central extensions of Lie algebras can be understood and classified by means of 2-cocycles. The Lie algebras we are interested in are "twisted forms" (defined by Galois descent) of algebras of the form g⊗ kR with g split finite-dimensional simple over a base field k of characteristic 0 and R a commutative unital and associative k-algebra (such algebras are ubiquitous in modern infinite-dimensional Lie theory). We introduce a special type of cocycle that we called standard. Our main result shows that any cocycle is cohomologous to a unique standard cocycle. As an application we give a precise description of the universal central extension of the twisted forms of g⊗ kR mentioned above. This yields a new proof of a classic theorem of C. Kassel [8]. For multiloop algebras, we obtain a "twisted" version of Kassel's result (which is due to R. Wilson [21] in the case of the affine Kac-Moody Lie algebras).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Pianzola, Arturo; Prelat, Daniel; Sepp, Claudia; Standard cocycles: Variations on themes of C. Kassel's and R. Wilson's; De Gruyter; Forum Mathematicum; 29; 6; 11-2017; 1441-1461
Compartir
Altmétricas