Mostrar el registro sencillo del ítem

dc.contributor.author
Sun, Yibing  
dc.contributor.author
Fu, Minyue  
dc.contributor.author
Wang, Bingchang  
dc.contributor.author
Zhang, Huanshui  
dc.contributor.author
Marelli, Damian Edgardo  
dc.date.available
2018-07-23T17:44:58Z  
dc.date.issued
2016-11  
dc.identifier.citation
Sun, Yibing; Fu, Minyue; Wang, Bingchang; Zhang, Huanshui; Marelli, Damian Edgardo; Dynamic state estimation for power networks using distributed MAP technique; Pergamon-Elsevier Science Ltd; Automatica; 73; 11-2016; 27-37  
dc.identifier.issn
0005-1098  
dc.identifier.uri
http://hdl.handle.net/11336/52845  
dc.description.abstract
This paper studies a distributed state estimation problem for a network of linear dynamic systems (called nodes), which evolve autonomously, but their measurements are coupled through neighborhood interactions. Power networks are typical networked systems obeying such features, with other examples including traffic networks, sensor networks and many multi-agent systems. We develop a new distributed state estimation approach, for each node to update its local state. The core of this distributed approach is a distributed maximum a posteriori (MAP) estimation technique, which delivers a globally optimal estimate under certain assumptions. We apply the distributed approach to an IEEE 118-bus system, and compare it with a centralized approach, which provides the optimal state estimate using all the measurements, and with a local state estimation approach, which uses only local measurements to estimate local states. Simulation results show that under different scenarios including normal operation, bad measurements and sudden load change, the distributed approach is clearly more accurate than the local state estimation approach and distributed static state estimation approach. Although the result is a bit less accurate than that by a centralized algorithm, the distributed algorithm enjoys low computational complexity and communication load, and is scalable to large power networks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Distributed Map Estimation  
dc.subject
Distributed State Estimation  
dc.subject
Kalman Filter  
dc.subject
Power Systems  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Dynamic state estimation for power networks using distributed MAP technique  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-23T12:55:47Z  
dc.journal.volume
73  
dc.journal.pagination
27-37  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Sun, Yibing. Shandong University; China  
dc.description.fil
Fil: Fu, Minyue. Universidad de Newcastle; Australia. Guangdong University of Technology; China  
dc.description.fil
Fil: Wang, Bingchang. Shandong University; China  
dc.description.fil
Fil: Zhang, Huanshui. Shandong University; China  
dc.description.fil
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Guangdong University of Technology; China  
dc.journal.title
Automatica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.automatica.2016.06.015  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0005109816302424