Mostrar el registro sencillo del ítem
dc.contributor.author
Sun, Yibing
dc.contributor.author
Fu, Minyue
dc.contributor.author
Wang, Bingchang
dc.contributor.author
Zhang, Huanshui
dc.contributor.author
Marelli, Damian Edgardo
dc.date.available
2018-07-23T17:44:58Z
dc.date.issued
2016-11
dc.identifier.citation
Sun, Yibing; Fu, Minyue; Wang, Bingchang; Zhang, Huanshui; Marelli, Damian Edgardo; Dynamic state estimation for power networks using distributed MAP technique; Pergamon-Elsevier Science Ltd; Automatica; 73; 11-2016; 27-37
dc.identifier.issn
0005-1098
dc.identifier.uri
http://hdl.handle.net/11336/52845
dc.description.abstract
This paper studies a distributed state estimation problem for a network of linear dynamic systems (called nodes), which evolve autonomously, but their measurements are coupled through neighborhood interactions. Power networks are typical networked systems obeying such features, with other examples including traffic networks, sensor networks and many multi-agent systems. We develop a new distributed state estimation approach, for each node to update its local state. The core of this distributed approach is a distributed maximum a posteriori (MAP) estimation technique, which delivers a globally optimal estimate under certain assumptions. We apply the distributed approach to an IEEE 118-bus system, and compare it with a centralized approach, which provides the optimal state estimate using all the measurements, and with a local state estimation approach, which uses only local measurements to estimate local states. Simulation results show that under different scenarios including normal operation, bad measurements and sudden load change, the distributed approach is clearly more accurate than the local state estimation approach and distributed static state estimation approach. Although the result is a bit less accurate than that by a centralized algorithm, the distributed algorithm enjoys low computational complexity and communication load, and is scalable to large power networks.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Distributed Map Estimation
dc.subject
Distributed State Estimation
dc.subject
Kalman Filter
dc.subject
Power Systems
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Dynamic state estimation for power networks using distributed MAP technique
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-23T12:55:47Z
dc.journal.volume
73
dc.journal.pagination
27-37
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Sun, Yibing. Shandong University; China
dc.description.fil
Fil: Fu, Minyue. Universidad de Newcastle; Australia. Guangdong University of Technology; China
dc.description.fil
Fil: Wang, Bingchang. Shandong University; China
dc.description.fil
Fil: Zhang, Huanshui. Shandong University; China
dc.description.fil
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Guangdong University of Technology; China
dc.journal.title
Automatica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.automatica.2016.06.015
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0005109816302424
Archivos asociados