Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Dynamic state estimation for power networks using distributed MAP technique

Sun, Yibing; Fu, Minyue; Wang, Bingchang; Zhang, Huanshui; Marelli, Damian EdgardoIcon
Fecha de publicación: 11/2016
Editorial: Pergamon-Elsevier Science Ltd
Revista: Automatica
ISSN: 0005-1098
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

This paper studies a distributed state estimation problem for a network of linear dynamic systems (called nodes), which evolve autonomously, but their measurements are coupled through neighborhood interactions. Power networks are typical networked systems obeying such features, with other examples including traffic networks, sensor networks and many multi-agent systems. We develop a new distributed state estimation approach, for each node to update its local state. The core of this distributed approach is a distributed maximum a posteriori (MAP) estimation technique, which delivers a globally optimal estimate under certain assumptions. We apply the distributed approach to an IEEE 118-bus system, and compare it with a centralized approach, which provides the optimal state estimate using all the measurements, and with a local state estimation approach, which uses only local measurements to estimate local states. Simulation results show that under different scenarios including normal operation, bad measurements and sudden load change, the distributed approach is clearly more accurate than the local state estimation approach and distributed static state estimation approach. Although the result is a bit less accurate than that by a centralized algorithm, the distributed algorithm enjoys low computational complexity and communication load, and is scalable to large power networks.
Palabras clave: Distributed Map Estimation , Distributed State Estimation , Kalman Filter , Power Systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.075Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/52845
DOI: https://dx.doi.org/10.1016/j.automatica.2016.06.015
URL: https://www.sciencedirect.com/science/article/pii/S0005109816302424
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Sun, Yibing; Fu, Minyue; Wang, Bingchang; Zhang, Huanshui; Marelli, Damian Edgardo; Dynamic state estimation for power networks using distributed MAP technique; Pergamon-Elsevier Science Ltd; Automatica; 73; 11-2016; 27-37
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES