Mostrar el registro sencillo del ítem

dc.contributor.author
Goos, Demian Nahuel  
dc.contributor.author
Reyero, Gabriela Fernanda  
dc.contributor.author
Roscani, Sabrina Dina  
dc.contributor.author
Santillan Marcus, Eduardo Adrian  
dc.date.available
2018-07-20T19:35:03Z  
dc.date.issued
2015-09  
dc.identifier.citation
Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-15  
dc.identifier.issn
1687-9651  
dc.identifier.uri
http://hdl.handle.net/11336/52779  
dc.description.abstract
We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Hindawi Publishing Corporation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Caputo Derivative  
dc.subject
Initial Baundary Value Problem  
dc.subject
Fractional Diffusion Equation  
dc.subject
Explicit Solutions  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-20T18:04:00Z  
dc.journal.volume
2015  
dc.journal.pagination
1-15  
dc.journal.pais
Egipto  
dc.journal.ciudad
El Cairo  
dc.description.fil
Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.description.fil
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.description.fil
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; Argentina  
dc.journal.title
International Journal of Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1155/2015/439419  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/439419/