Mostrar el registro sencillo del ítem
dc.contributor.author
Allegrini, Franco
dc.contributor.author
Olivieri, Alejandro Cesar
dc.date.available
2018-07-19T19:05:30Z
dc.date.issued
2016-08
dc.identifier.citation
Allegrini, Franco; Olivieri, Alejandro Cesar; Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations; American Chemical Society; Analytical Chemistry; 88; 15; 8-2016; 7807-7812
dc.identifier.issn
0003-2700
dc.identifier.uri
http://hdl.handle.net/11336/52696
dc.description.abstract
With the proliferation of multivariate calibration methods based on artificial neural networks, expressions for the estimation of figures of merit such as sensitivity, prediction uncertainty, and detection limit are urgently needed. This would bring nonlinear multivariate calibration methodologies to the same status as the linear counterparts in terms of comparability. Currently only the average prediction error or the ratio of performance to deviation for a test sample set is employed to characterize and promote neural network calibrations. It is clear that additional information is required. We report for the first time expressions that easily allow one to compute three relevant figures: (1) the sensitivity, which turns out to be sample-dependent, as expected, (2) the prediction uncertainty, and (3) the detection limit. The approach resembles that employed for linear multivariate calibration, i.e., partial least-squares regression, specifically adapted to neural network calibration scenarios. As usual, both simulated and real (near-infrared) spectral data sets serve to illustrate the proposal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Artifitial Neural Networks Calibration
dc.subject
Sensitivity
dc.subject
Limit of Detection
dc.subject
Prediction Uncertainty
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-18T20:47:56Z
dc.journal.volume
88
dc.journal.number
15
dc.journal.pagination
7807-7812
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
dc.journal.title
Analytical Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.analchem.6b01857
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acs.analchem.6b01857
Archivos asociados