Mostrar el registro sencillo del ítem

dc.contributor.author
Allegrini, Franco  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2018-07-19T19:05:30Z  
dc.date.issued
2016-08  
dc.identifier.citation
Allegrini, Franco; Olivieri, Alejandro Cesar; Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations; American Chemical Society; Analytical Chemistry; 88; 15; 8-2016; 7807-7812  
dc.identifier.issn
0003-2700  
dc.identifier.uri
http://hdl.handle.net/11336/52696  
dc.description.abstract
With the proliferation of multivariate calibration methods based on artificial neural networks, expressions for the estimation of figures of merit such as sensitivity, prediction uncertainty, and detection limit are urgently needed. This would bring nonlinear multivariate calibration methodologies to the same status as the linear counterparts in terms of comparability. Currently only the average prediction error or the ratio of performance to deviation for a test sample set is employed to characterize and promote neural network calibrations. It is clear that additional information is required. We report for the first time expressions that easily allow one to compute three relevant figures: (1) the sensitivity, which turns out to be sample-dependent, as expected, (2) the prediction uncertainty, and (3) the detection limit. The approach resembles that employed for linear multivariate calibration, i.e., partial least-squares regression, specifically adapted to neural network calibration scenarios. As usual, both simulated and real (near-infrared) spectral data sets serve to illustrate the proposal.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Artifitial Neural Networks Calibration  
dc.subject
Sensitivity  
dc.subject
Limit of Detection  
dc.subject
Prediction Uncertainty  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-18T20:47:56Z  
dc.journal.volume
88  
dc.journal.number
15  
dc.journal.pagination
7807-7812  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina  
dc.journal.title
Analytical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.analchem.6b01857  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acs.analchem.6b01857