Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations

Allegrini, FrancoIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 08/2016
Editorial: American Chemical Society
Revista: Analytical Chemistry
ISSN: 0003-2700
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

With the proliferation of multivariate calibration methods based on artificial neural networks, expressions for the estimation of figures of merit such as sensitivity, prediction uncertainty, and detection limit are urgently needed. This would bring nonlinear multivariate calibration methodologies to the same status as the linear counterparts in terms of comparability. Currently only the average prediction error or the ratio of performance to deviation for a test sample set is employed to characterize and promote neural network calibrations. It is clear that additional information is required. We report for the first time expressions that easily allow one to compute three relevant figures: (1) the sensitivity, which turns out to be sample-dependent, as expected, (2) the prediction uncertainty, and (3) the detection limit. The approach resembles that employed for linear multivariate calibration, i.e., partial least-squares regression, specifically adapted to neural network calibration scenarios. As usual, both simulated and real (near-infrared) spectral data sets serve to illustrate the proposal.
Palabras clave: Artifitial Neural Networks Calibration , Sensitivity , Limit of Detection , Prediction Uncertainty
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 988.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/52696
URL: https://pubs.acs.org/doi/10.1021/acs.analchem.6b01857
DOI: https://dx.doi.org/10.1021/acs.analchem.6b01857
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Allegrini, Franco; Olivieri, Alejandro Cesar; Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations; American Chemical Society; Analytical Chemistry; 88; 15; 8-2016; 7807-7812
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES