Mostrar el registro sencillo del ítem
dc.contributor.author
Villar, Sebastian Aldo
dc.contributor.author
Acosta, Gerardo Gabriel
dc.date.available
2016-04-15T21:05:23Z
dc.date.issued
2014-10
dc.identifier.citation
Villar, Sebastian Aldo; Acosta, Gerardo Gabriel; Accumulated CA-CFAR Process in 2-D for Online Object Detection From Sidescan Sonar Data; Institute Of Electrical And Electronics Engineers; Ieee Journal Of Oceanic Engineering; 40; 3; 10-2014; 558-569
dc.identifier.issn
0364-9059
dc.identifier.uri
http://hdl.handle.net/11336/5247
dc.description.abstract
This paper describes a novel approach to object detection from sidescan sonar (SSS) acoustical images. The current techniques of acoustical images processing consume a great deal of time and computational resources with many parameters to tune in order to obtain good quality images. This is due to the handling of the large data volume generated by these kinds of devices. The technique proposed in this work does not make any a priori assumption about the nature of the SSS image to be processed. However, it is able to make a segmentation of the image into two types of regions: acoustical highlight and seafloor reverberation areas, and based on this, it makes detection. The developed algorithm to achieve this consists of a migration and adaptation of a technique widely used in radar technology for detecting moving objects. This radar technique is known as the cell average-constant false alarm rate (CA-CFAR). This paper presents a drastic improvement of such approach by making an extension into 2-D analysis of the SSS image, in a way similar to integral image used in CA-CFAR detection for pulse Doppler radar. In this form, optimization of the computational effort is achieved. This new technique was called the accumulated cell average-constant false alarm rate in 2-D (ACA-CFAR 2-D). It was applied to pipeline detection and tracking with a very interesting degree of success. In addition, this technique provides similar results to image segmentation with respect to other frequently used approaches, but with much less computational resources and parameters to set. Its simplicity is a strong support of its robustness and accuracy. This feature makes it particularly attractive for using it in real-time applications, such as underwater robotics perception systems. This proposal was tested experimentally with acoustical data from SSS and the results detecting pipelines, and other shapes like sunken vessels or airplanes, are presented in this paper. Likewise, an experimental co- parison with the results obtained with inverse undecimated discrete wavelet transform (UDWT) and active contours techniques is also presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute Of Electrical And Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Cell Average-Constant False Alarm Rate
dc.subject
Online Object Detection
dc.subject
Sidescan Sonar
dc.subject
Sonar Imagery
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Accumulated CA-CFAR Process in 2-D for Online Object Detection From Sidescan Sonar Data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-05-06 15:52:43.262787-03
dc.journal.volume
40
dc.journal.number
3
dc.journal.pagination
558-569
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Villar, Sebastian Aldo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
dc.description.fil
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
dc.journal.title
Ieee Journal Of Oceanic Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6930826
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/JOE.2014.2356951
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1109/JOE.2014.2356951
Archivos asociados