Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Accumulated CA-CFAR Process in 2-D for Online Object Detection From Sidescan Sonar Data

Villar, Sebastian AldoIcon ; Acosta, Gerardo GabrielIcon
Fecha de publicación: 10/2014
Editorial: Institute Of Electrical And Electronics Engineers
Revista: Ieee Journal Of Oceanic Engineering
ISSN: 0364-9059
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

This paper describes a novel approach to object detection from sidescan sonar (SSS) acoustical images. The current techniques of acoustical images processing consume a great deal of time and computational resources with many parameters to tune in order to obtain good quality images. This is due to the handling of the large data volume generated by these kinds of devices. The technique proposed in this work does not make any a priori assumption about the nature of the SSS image to be processed. However, it is able to make a segmentation of the image into two types of regions: acoustical highlight and seafloor reverberation areas, and based on this, it makes detection. The developed algorithm to achieve this consists of a migration and adaptation of a technique widely used in radar technology for detecting moving objects. This radar technique is known as the cell average-constant false alarm rate (CA-CFAR). This paper presents a drastic improvement of such approach by making an extension into 2-D analysis of the SSS image, in a way similar to integral image used in CA-CFAR detection for pulse Doppler radar. In this form, optimization of the computational effort is achieved. This new technique was called the accumulated cell average-constant false alarm rate in 2-D (ACA-CFAR 2-D). It was applied to pipeline detection and tracking with a very interesting degree of success. In addition, this technique provides similar results to image segmentation with respect to other frequently used approaches, but with much less computational resources and parameters to set. Its simplicity is a strong support of its robustness and accuracy. This feature makes it particularly attractive for using it in real-time applications, such as underwater robotics perception systems. This proposal was tested experimentally with acoustical data from SSS and the results detecting pipelines, and other shapes like sunken vessels or airplanes, are presented in this paper. Likewise, an experimental co- parison with the results obtained with inverse undecimated discrete wavelet transform (UDWT) and active contours techniques is also presented.
Palabras clave: Cell Average-Constant False Alarm Rate , Online Object Detection , Sidescan Sonar , Sonar Imagery
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.129Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/5247
URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6930826
DOI: http://dx.doi.org/10.1109/JOE.2014.2356951
DOI: http://dx.doi.org/ 10.1109/JOE.2014.2356951
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(CIFICEN)
Articulos de CENTRO DE INV. EN FISICA E INGENIERIA DEL CENTRO DE LA PCIA. DE BS. AS.
Citación
Villar, Sebastian Aldo; Acosta, Gerardo Gabriel; Accumulated CA-CFAR Process in 2-D for Online Object Detection From Sidescan Sonar Data; Institute Of Electrical And Electronics Engineers; Ieee Journal Of Oceanic Engineering; 40; 3; 10-2014; 558-569
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES