Artículo
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
Fecha de publicación:
07/2015
Editorial:
Element
Revista:
Mathematical Inequalities & Applications
ISSN:
1331-4343
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.
Palabras clave:
One-Sided Singular Integrals
,
Sawyer Weights
,
Weighted Norm Inequalities
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-1109
Compartir
Altmétricas