Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.date.available
2018-07-02T20:43:21Z
dc.date.issued
2017-06
dc.identifier.citation
Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-329
dc.identifier.issn
0041-6932
dc.identifier.uri
http://hdl.handle.net/11336/50955
dc.description.abstract
Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Unión Matemática Argentina
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
C*-Algebra
dc.subject
Projective Unitaries
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Geometry of the projective unitary group of a C*-algebra
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-18T14:22:04Z
dc.identifier.eissn
1669-9637
dc.journal.volume
58
dc.journal.number
2
dc.journal.pagination
319-329
dc.journal.pais
Argentina
dc.journal.ciudad
Bahia Blanca
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.journal.title
Revista de la Unión Matemática Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.inmabb.criba.edu.ar/revuma/pdf/v58n2/v58n2a11.pdf
Archivos asociados