Artículo
Geometry of the projective unitary group of a C*-algebra
Fecha de publicación:
06/2017
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
0041-6932
e-ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.
Palabras clave:
C*-Algebra
,
Projective Unitaries
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-329
Compartir