Mostrar el registro sencillo del ítem
dc.contributor.author
Izetta Riera, Carlos Javier
dc.contributor.author
Verdes, Pablo Fabian
dc.contributor.author
Granitto, Pablo Miguel
dc.date.available
2018-06-28T15:11:13Z
dc.date.issued
2017-12
dc.identifier.citation
Izetta Riera, Carlos Javier; Verdes, Pablo Fabian; Granitto, Pablo Miguel; Improved multiclass feature selection via list combination; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 88; 12-2017; 205-216
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/50349
dc.description.abstract
Feature selection is a crucial machine learning technique aimed at reducing the dimensionality of the input space. By discarding useless or redundant variables, not only it improves model performance but also facilitates its interpretability. The well-known Support Vector Machines–Recursive Feature Elimination (SVM-RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using SVM-RFE on a multiclass classification problem, the usual strategy is to decompose it into a series of binary ones, and to generate an importance statistics for each feature on each binary problem. These importances are then averaged over the set of binary problems to synthesize a single value for feature ranking. In some cases, however, this procedure can lead to poor selection. In this paper we discuss six new strategies, based on list combination, designed to yield improved selections starting from the importances given by the binary problems. We evaluate them on artificial and real-world datasets, using both One–Vs–One (OVO) and One–Vs–All (OVA) strategies. Our results suggest that the OVO decomposition is most effective for feature selection on multiclass problems. We also find that in most situations the new K-First strategy can find better subsets of features than the traditional weight average approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Feature Selection
dc.subject
Multiclass Problems
dc.subject
Support Vector Machine
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Improved multiclass feature selection via list combination
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-28T14:05:59Z
dc.journal.volume
88
dc.journal.pagination
205-216
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Izetta Riera, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Expert Systems with Applications
dc.rights.embargoDate
2018-07-01
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2017.06.043
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417417304670
Archivos asociados