Mostrar el registro sencillo del ítem

dc.contributor.author
Izetta Riera, Carlos Javier  
dc.contributor.author
Verdes, Pablo Fabian  
dc.contributor.author
Granitto, Pablo Miguel  
dc.date.available
2018-06-28T15:11:13Z  
dc.date.issued
2017-12  
dc.identifier.citation
Izetta Riera, Carlos Javier; Verdes, Pablo Fabian; Granitto, Pablo Miguel; Improved multiclass feature selection via list combination; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 88; 12-2017; 205-216  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/50349  
dc.description.abstract
Feature selection is a crucial machine learning technique aimed at reducing the dimensionality of the input space. By discarding useless or redundant variables, not only it improves model performance but also facilitates its interpretability. The well-known Support Vector Machines–Recursive Feature Elimination (SVM-RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using SVM-RFE on a multiclass classification problem, the usual strategy is to decompose it into a series of binary ones, and to generate an importance statistics for each feature on each binary problem. These importances are then averaged over the set of binary problems to synthesize a single value for feature ranking. In some cases, however, this procedure can lead to poor selection. In this paper we discuss six new strategies, based on list combination, designed to yield improved selections starting from the importances given by the binary problems. We evaluate them on artificial and real-world datasets, using both One–Vs–One (OVO) and One–Vs–All (OVA) strategies. Our results suggest that the OVO decomposition is most effective for feature selection on multiclass problems. We also find that in most situations the new K-First strategy can find better subsets of features than the traditional weight average approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Feature Selection  
dc.subject
Multiclass Problems  
dc.subject
Support Vector Machine  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improved multiclass feature selection via list combination  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-28T14:05:59Z  
dc.journal.volume
88  
dc.journal.pagination
205-216  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Izetta Riera, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.rights.embargoDate
2018-07-01  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2017.06.043  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417417304670