Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improved multiclass feature selection via list combination

Izetta Riera, Carlos JavierIcon ; Verdes, Pablo FabianIcon ; Granitto, Pablo MiguelIcon
Fecha de publicación: 12/2017
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Feature selection is a crucial machine learning technique aimed at reducing the dimensionality of the input space. By discarding useless or redundant variables, not only it improves model performance but also facilitates its interpretability. The well-known Support Vector Machines–Recursive Feature Elimination (SVM-RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using SVM-RFE on a multiclass classification problem, the usual strategy is to decompose it into a series of binary ones, and to generate an importance statistics for each feature on each binary problem. These importances are then averaged over the set of binary problems to synthesize a single value for feature ranking. In some cases, however, this procedure can lead to poor selection. In this paper we discuss six new strategies, based on list combination, designed to yield improved selections starting from the importances given by the binary problems. We evaluate them on artificial and real-world datasets, using both One–Vs–One (OVO) and One–Vs–All (OVA) strategies. Our results suggest that the OVO decomposition is most effective for feature selection on multiclass problems. We also find that in most situations the new K-First strategy can find better subsets of features than the traditional weight average approach.
Palabras clave: Feature Selection , Multiclass Problems , Support Vector Machine
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 7.607Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/embargoedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/50349
DOI: http://dx.doi.org/10.1016/j.eswa.2017.06.043
URL: https://www.sciencedirect.com/science/article/pii/S0957417417304670
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Izetta Riera, Carlos Javier; Verdes, Pablo Fabian; Granitto, Pablo Miguel; Improved multiclass feature selection via list combination; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 88; 12-2017; 205-216
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES