Mostrar el registro sencillo del ítem

dc.contributor.author
Castiglioni, José Luis  
dc.contributor.author
San Martín, Hernán Javier  
dc.date.available
2018-06-22T22:35:07Z  
dc.date.issued
2017-10  
dc.identifier.citation
Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-16  
dc.identifier.issn
0039-3215  
dc.identifier.uri
http://hdl.handle.net/11336/49865  
dc.description.abstract
An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bounded Semilattices  
dc.subject
Congruences  
dc.subject
Weak Implications  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
l-Hemi-Implicative Semilattices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-22T15:06:50Z  
dc.identifier.eissn
1572-8730  
dc.journal.pagination
1-16  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.journal.title
Studia Logica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11225-017-9759-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-017-9759-3