Artículo
l-Hemi-Implicative Semilattices
Fecha de publicación:
10/2017
Editorial:
Springer
Revista:
Studia Logica
ISSN:
0039-3215
e-ISSN:
1572-8730
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.
Palabras clave:
Bounded Semilattices
,
Congruences
,
Weak Implications
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-16
Compartir
Altmétricas