Mostrar el registro sencillo del ítem
dc.contributor.author
Zunino, Luciano José
dc.contributor.author
Kulp, Christopher W.
dc.date.available
2018-06-19T19:18:37Z
dc.date.issued
2017-11
dc.identifier.citation
Zunino, Luciano José; Kulp, Christopher W.; Detecting nonlinearity in short and noisy time series using the permutation entropy; Elsevier Science; Physics Letters A; 381; 42; 11-2017; 3627-3635
dc.identifier.issn
0375-9601
dc.identifier.uri
http://hdl.handle.net/11336/49407
dc.description.abstract
Permutation entropy contains the information about the temporal structure associated with the underlying dynamics of a time series. Its estimation is simple, and because it is based on the comparison of neighboring values, it becomes significantly robust to noise. It is also computationally efficient and invariant with respect to nonlinear monotonous transformations. For all these reasons, the permutation entropy seems to be particularly suitable as a discriminative measure for unveiling nonlinear dynamics in arbitrary real-world data. In this paper, we study the efficacy of a conventional surrogate method with a linear stochastic process as the null hypothesis but implementing the permutation entropy as a nonlinearity measure. Its discriminative power is tested by implementing several analyses on numerical signals whose dynamical properties are known a priori (linear discrete and continuous models, chaotic regimes of discrete and continuous systems). The performance of the proposed approach in real-world applications (chaotic laser data, monthly smoothed sunspot index and neuro-physiological recordings) is also demonstrated. The results obtained allow us to conclude that this symbolic tool is very useful for discriminating nonlinear characteristics in very short and noisy data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Nonlinearity
dc.subject
Permutation Entropy
dc.subject
Surrogate Method
dc.subject
Time Series Analysis
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Detecting nonlinearity in short and noisy time series using the permutation entropy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-18T21:36:59Z
dc.journal.volume
381
dc.journal.number
42
dc.journal.pagination
3627-3635
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Kulp, Christopher W.. Lycoming College; Estados Unidos
dc.journal.title
Physics Letters A
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.physleta.2017.09.032
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117308976
Archivos asociados