Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detecting nonlinearity in short and noisy time series using the permutation entropy

Zunino, Luciano JoséIcon ; Kulp, Christopher W.
Fecha de publicación: 11/2017
Editorial: Elsevier Science
Revista: Physics Letters A
ISSN: 0375-9601
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Permutation entropy contains the information about the temporal structure associated with the underlying dynamics of a time series. Its estimation is simple, and because it is based on the comparison of neighboring values, it becomes significantly robust to noise. It is also computationally efficient and invariant with respect to nonlinear monotonous transformations. For all these reasons, the permutation entropy seems to be particularly suitable as a discriminative measure for unveiling nonlinear dynamics in arbitrary real-world data. In this paper, we study the efficacy of a conventional surrogate method with a linear stochastic process as the null hypothesis but implementing the permutation entropy as a nonlinearity measure. Its discriminative power is tested by implementing several analyses on numerical signals whose dynamical properties are known a priori (linear discrete and continuous models, chaotic regimes of discrete and continuous systems). The performance of the proposed approach in real-world applications (chaotic laser data, monthly smoothed sunspot index and neuro-physiological recordings) is also demonstrated. The results obtained allow us to conclude that this symbolic tool is very useful for discriminating nonlinear characteristics in very short and noisy data.
Palabras clave: Nonlinearity , Permutation Entropy , Surrogate Method , Time Series Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 558.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/49407
DOI: https://dx.doi.org/10.1016/j.physleta.2017.09.032
URL: https://www.sciencedirect.com/science/article/pii/S0375960117308976
Colecciones
Articulos(CIOP)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Citación
Zunino, Luciano José; Kulp, Christopher W.; Detecting nonlinearity in short and noisy time series using the permutation entropy; Elsevier Science; Physics Letters A; 381; 42; 11-2017; 3627-3635
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES