Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the use of high-order cumulant and bispectrum formuscular-activity detection

Orosco, Eugenio ConradoIcon ; Diez, Pablo FedericoIcon ; Laciar Leber, EricIcon ; Mut, Vicente AntonioIcon ; Soria, Carlos MiguelIcon ; Di Sciascio, Fernando Agustin
Fecha de publicación: 04/2015
Editorial: Elsevier
Revista: Biomedical Signal Processing And Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

The electromyographic (EMG) signals are extensively used on feature extraction methods for movement classification purposes. High-Order Statistics (HOS) is being employed increasingly in myoelectric research. HOS techniques could be represented in the frequency domain (high-order spectra, e.g., bispectrum, trispectrum) or in the time domain (higher-order cumulants). More calculus is required for computing the HOS in the frequency domain. On the one hand, classical bispectrum based features were applied to EMG signals. On the other hand, we propose novel third-order cumulant-based features for EMG signals. Two different classifiers are implemented for muscular activity detection. Different analysis and evaluations were applied to both HOS-based features in order to qualify and quantify similarities. Based on these results, it is possible to conclude that cumulant based features and bispectrum-based features had comparable behavior and allowed similar classification rates. Hence, extra calculus in order to convert time- to frequency-domain should be avoided.
Palabras clave: Emg , Higher-Order Statistics , Cumulants , Bispectrum
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.336Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/4900
URL: http://dx.doi.org/ 10.1016/j.bspc.2015.02.011
URL: http://www.sciencedirect.com/science/article/pii/S1746809415000233
DOI: http://dx.doi.org/10.1016/j.bspc.2015.02.011
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Orosco, Eugenio Conrado; Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Soria, Carlos Miguel; et al.; On the use of high-order cumulant and bispectrum formuscular-activity detection; Elsevier; Biomedical Signal Processing And Control; 18; 4-2015; 325-333
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES