Mostrar el registro sencillo del ítem

dc.contributor.author
Rubiolo, Mariano  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Stegmayer, Georgina  
dc.date.available
2018-06-01T20:51:17Z  
dc.date.issued
2017-11  
dc.identifier.citation
Rubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina; Extreme learning machines for reverse engineering of gene regulatory networks from expression time series; Oxford University Press; Bioinformatics (Oxford, England); 34; 7; 11-2017; 1253-1260  
dc.identifier.issn
1367-4803  
dc.identifier.uri
http://hdl.handle.net/11336/47065  
dc.description.abstract
The reconstruction of gene regulatory networks (GRNs) from genes profiles has a growing interest in bioinformatics for understanding the complex regulatory mechanisms in cellular systems. GRNs explicitly represent the cause-effect of regulation among a group of genes and its reconstruction is today a challenging computational problem. Several methods were proposed, but most of them require different input sources to provide an acceptable prediction. Thus, it is a great challenge to reconstruct a GRN only from temporal gene-expression data. Results: Extreme Learning Machine (ELM) is a new supervised neural model that has gained interest in the last years because of its higher learning rate and better performance than existing supervised models in terms of predictive power. This work proposes a novel approach for GRNs reconstruction in which ELMs are used for modeling the relationships between gene expression time series. Artificial datasets generated with the well-known benchmark tool used in DREAM competitions were used. Real datasets were used for validation of this novel proposal with well-known GRNs underlying the time series. The impact of increasing the size of GRNs was analyzed in detail for the compared methods. The results obtained confirm the superiority of the ELM approach against very recent state-of-the-art methods in the same experimental conditions.<br />  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Extreme Learning Machine  
dc.subject
Gene Regulatory Networks  
dc.subject
Gene Expression  
dc.subject
Prediction  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Extreme learning machines for reverse engineering of gene regulatory networks from expression time series  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-31T18:19:09Z  
dc.journal.volume
34  
dc.journal.number
7  
dc.journal.pagination
1253-1260  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Rubiolo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Bioinformatics (Oxford, England)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btx730/4648509  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btx730