Mostrar el registro sencillo del ítem

dc.contributor.author
Vignolo, Leandro Daniel  
dc.contributor.author
Prasanna, S.R. Mahadeva  
dc.contributor.author
Dandapat, Samarendra  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.contributor.author
Milone, Diego Humberto  
dc.date.available
2018-06-01T20:18:32Z  
dc.date.issued
2016-07  
dc.identifier.citation
Vignolo, Leandro Daniel; Prasanna, S.R. Mahadeva; Dandapat, Samarendra; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Feature optimisation for stress recognition in speech; Elsevier Science; Pattern Recognition Letters; 84; 1; 7-2016; 1-7  
dc.identifier.issn
0167-8655  
dc.identifier.uri
http://hdl.handle.net/11336/47048  
dc.description.abstract
Mel-frequency cepstral coefficients introduced biologically-inspired features into speech technology, becoming the most commonly used representation for speech, speaker and emotion recognition, and even for applications in music. While this representation is quite popular, it is ambitious to assume that it would provide the best results for every application, as it is not designed for each specific objective.This work proposes a methodology to learn a speech representation from data by optimising a filter bank, in order to improve results in the classification of stressed speech. Since population-based metaheuristics have proved successful in related applications, an evolutionary algorithm is designed to search for a filter bank that maximises the classification accuracy. For the codification, spline functions are used to shape the filter banks, which allows reducing the number of parameters to optimise. The filter banks obtained with the proposed methodology improve the results in stressed and emotional speech classification.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Evolutionary Algorithms  
dc.subject
Stressed Speech  
dc.subject
Emotional Speech  
dc.subject
Speech Processing  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Feature optimisation for stress recognition in speech  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-31T18:17:40Z  
dc.journal.volume
84  
dc.journal.number
1  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Prasanna, S.R. Mahadeva. Indian Institute of Technology Guwahati; India  
dc.description.fil
Fil: Dandapat, Samarendra. Indian Institute of Technology Guwahati; India  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Pattern Recognition Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865516301799  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.patrec.2016.07.017