Mostrar el registro sencillo del ítem
dc.contributor.author
Vignolo, Leandro Daniel
dc.contributor.author
Prasanna, S.R. Mahadeva
dc.contributor.author
Dandapat, Samarendra
dc.contributor.author
Rufiner, Hugo Leonardo
dc.contributor.author
Milone, Diego Humberto
dc.date.available
2018-06-01T20:18:32Z
dc.date.issued
2016-07
dc.identifier.citation
Vignolo, Leandro Daniel; Prasanna, S.R. Mahadeva; Dandapat, Samarendra; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Feature optimisation for stress recognition in speech; Elsevier Science; Pattern Recognition Letters; 84; 1; 7-2016; 1-7
dc.identifier.issn
0167-8655
dc.identifier.uri
http://hdl.handle.net/11336/47048
dc.description.abstract
Mel-frequency cepstral coefficients introduced biologically-inspired features into speech technology, becoming the most commonly used representation for speech, speaker and emotion recognition, and even for applications in music. While this representation is quite popular, it is ambitious to assume that it would provide the best results for every application, as it is not designed for each specific objective.This work proposes a methodology to learn a speech representation from data by optimising a filter bank, in order to improve results in the classification of stressed speech. Since population-based metaheuristics have proved successful in related applications, an evolutionary algorithm is designed to search for a filter bank that maximises the classification accuracy. For the codification, spline functions are used to shape the filter banks, which allows reducing the number of parameters to optimise. The filter banks obtained with the proposed methodology improve the results in stressed and emotional speech classification.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Evolutionary Algorithms
dc.subject
Stressed Speech
dc.subject
Emotional Speech
dc.subject
Speech Processing
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Feature optimisation for stress recognition in speech
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-05-31T18:17:40Z
dc.journal.volume
84
dc.journal.number
1
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Prasanna, S.R. Mahadeva. Indian Institute of Technology Guwahati; India
dc.description.fil
Fil: Dandapat, Samarendra. Indian Institute of Technology Guwahati; India
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Pattern Recognition Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865516301799
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.patrec.2016.07.017
Archivos asociados