Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Feature optimisation for stress recognition in speech

Vignolo, Leandro DanielIcon ; Prasanna, S.R. Mahadeva; Dandapat, Samarendra; Rufiner, Hugo LeonardoIcon ; Milone, Diego HumbertoIcon
Fecha de publicación: 07/2016
Editorial: Elsevier Science
Revista: Pattern Recognition Letters
ISSN: 0167-8655
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Mel-frequency cepstral coefficients introduced biologically-inspired features into speech technology, becoming the most commonly used representation for speech, speaker and emotion recognition, and even for applications in music. While this representation is quite popular, it is ambitious to assume that it would provide the best results for every application, as it is not designed for each specific objective.This work proposes a methodology to learn a speech representation from data by optimising a filter bank, in order to improve results in the classification of stressed speech. Since population-based metaheuristics have proved successful in related applications, an evolutionary algorithm is designed to search for a filter bank that maximises the classification accuracy. For the codification, spline functions are used to shape the filter banks, which allows reducing the number of parameters to optimise. The filter banks obtained with the proposed methodology improve the results in stressed and emotional speech classification.
Palabras clave: Evolutionary Algorithms , Stressed Speech , Emotional Speech , Speech Processing
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 632.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/47048
URL: http://www.sciencedirect.com/science/article/pii/S0167865516301799
DOI: https://doi.org/10.1016/j.patrec.2016.07.017
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Vignolo, Leandro Daniel; Prasanna, S.R. Mahadeva; Dandapat, Samarendra; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Feature optimisation for stress recognition in speech; Elsevier Science; Pattern Recognition Letters; 84; 1; 7-2016; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES