Artículo
Feature optimisation for stress recognition in speech
Vignolo, Leandro Daniel
; Prasanna, S.R. Mahadeva; Dandapat, Samarendra; Rufiner, Hugo Leonardo
; Milone, Diego Humberto
Fecha de publicación:
07/2016
Editorial:
Elsevier Science
Revista:
Pattern Recognition Letters
ISSN:
0167-8655
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Mel-frequency cepstral coefficients introduced biologically-inspired features into speech technology, becoming the most commonly used representation for speech, speaker and emotion recognition, and even for applications in music. While this representation is quite popular, it is ambitious to assume that it would provide the best results for every application, as it is not designed for each specific objective.This work proposes a methodology to learn a speech representation from data by optimising a filter bank, in order to improve results in the classification of stressed speech. Since population-based metaheuristics have proved successful in related applications, an evolutionary algorithm is designed to search for a filter bank that maximises the classification accuracy. For the codification, spline functions are used to shape the filter banks, which allows reducing the number of parameters to optimise. The filter banks obtained with the proposed methodology improve the results in stressed and emotional speech classification.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Vignolo, Leandro Daniel; Prasanna, S.R. Mahadeva; Dandapat, Samarendra; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Feature optimisation for stress recognition in speech; Elsevier Science; Pattern Recognition Letters; 84; 1; 7-2016; 1-7
Compartir
Altmétricas