Artículo
On Evolutionary Algorithms for Biclustering of Gene Expression Data
Fecha de publicación:
07/2015
Editorial:
Bentham Science Publishers
Revista:
Current Bioinformatics
ISSN:
1574-8936
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Past decades have seen the rapid development of microarray technologies making available large amounts of gene expression data. Hence, has become increasingly important to count with reliable methods that interpret this information in order to discover new biological knowledge. In this review paper we aim to describe the main existing evolutionary methods that analyze microarray gene expression data by means of biclustering techniques. Strategies will be classified according to the evaluation metric they use to quantify the quality of the biclusters. In this context, the main evaluation measures namely mean squared residue, virtual error and transposed virtual error are first presented. Then, the main evolutionary algorithms, which find biclusters in gene expression data matrices using those metrics, are described and compared.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Carballido, Jessica Andrea; Gallo, Cristian Andrés; Dussaut, Julieta Sol; Ponzoni, Ignacio; On Evolutionary Algorithms for Biclustering of Gene Expression Data; Bentham Science Publishers; Current Bioinformatics; 10; 3; 7-2015; 259-267
Compartir
Altmétricas