Mostrar el registro sencillo del ítem
dc.contributor.author
Kewei Zhang
dc.contributor.author
Orlando, Antonio
dc.contributor.author
Elaine Crooks
dc.date.available
2018-05-18T14:36:02Z
dc.date.issued
2015-04
dc.identifier.citation
Kewei Zhang; Orlando, Antonio; Elaine Crooks; Compensated convexity and Hausdorff stable geometric singularity extractions; World Scientific; Mathematical Models And Methods In Applied Sciences; 25; 04; 4-2015; 747-801
dc.identifier.issn
0218-2025
dc.identifier.uri
http://hdl.handle.net/11336/45547
dc.description.abstract
We develop and apply the theory of lower and upper compensated convex transforms introduced in [K. Zhang, Compensated convexity and its applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 743?771] to define multiscale, parametrized, geometric singularity extraction transforms of ridges, valleys and edges of function graphs and sets in Rn. These transforms can be interpreted as "tight" opening and closing operators, respectively, with quadratic structuring functions. We show that these geometric morphological operators are invariant with respect to translation, and stable under curvature perturbations, and establish precise locality and tight approximation properties for compensated convex transforms applied to bounded functions and continuous functions. Furthermore, we establish multiscale and Hausdorff stable versions of such transforms. Specifically, the stable ridge transforms can be used to extract exterior corners of domains defined by their characteristic functions. Examples of explicitly calculated prototype mathematical models are given, as well as some numerical experiments illustrating the application of these transforms to 2d and 3d objects.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Compensated Convex Transforms
dc.subject
Ridges
dc.subject
Curvature Bounds
dc.subject
Density Property
dc.subject
Valleys
dc.subject
Edges
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Compensated convexity and Hausdorff stable geometric singularity extractions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-05-04T16:46:59Z
dc.journal.volume
25
dc.journal.number
04
dc.journal.pagination
747-801
dc.journal.pais
Singapur
dc.journal.ciudad
London, UK
dc.description.fil
Fil: Kewei Zhang. The University of Nottingham; Reino Unido
dc.description.fil
Fil: Orlando, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina
dc.description.fil
Fil: Elaine Crooks. Swansea University; Reino Unido
dc.journal.title
Mathematical Models And Methods In Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1142/S0218202515500189
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202515500189
Archivos asociados