Artículo
Compensated convexity and Hausdorff stable geometric singularity extractions
Fecha de publicación:
04/2015
Editorial:
World Scientific
Revista:
Mathematical Models And Methods In Applied Sciences
ISSN:
0218-2025
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We develop and apply the theory of lower and upper compensated convex transforms introduced in [K. Zhang, Compensated convexity and its applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 743?771] to define multiscale, parametrized, geometric singularity extraction transforms of ridges, valleys and edges of function graphs and sets in Rn. These transforms can be interpreted as "tight" opening and closing operators, respectively, with quadratic structuring functions. We show that these geometric morphological operators are invariant with respect to translation, and stable under curvature perturbations, and establish precise locality and tight approximation properties for compensated convex transforms applied to bounded functions and continuous functions. Furthermore, we establish multiscale and Hausdorff stable versions of such transforms. Specifically, the stable ridge transforms can be used to extract exterior corners of domains defined by their characteristic functions. Examples of explicitly calculated prototype mathematical models are given, as well as some numerical experiments illustrating the application of these transforms to 2d and 3d objects.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Kewei Zhang; Orlando, Antonio; Elaine Crooks; Compensated convexity and Hausdorff stable geometric singularity extractions; World Scientific; Mathematical Models And Methods In Applied Sciences; 25; 04; 4-2015; 747-801
Compartir
Altmétricas