Mostrar el registro sencillo del ítem

dc.contributor.author
Zhou, Yinghui  
dc.contributor.author
Lucini, María Magdalena  
dc.date.available
2018-05-17T12:14:14Z  
dc.date.issued
2005-07  
dc.identifier.citation
Zhou, Yinghui; Lucini, María Magdalena; Gaining acceptability for the Bayesian decision-theoretic approach in dose-escalation studies; John Wiley & Sons Inc; Pharmaceutical Statistics; 4; 3; 7-2005; 161-171  
dc.identifier.issn
1539-1604  
dc.identifier.uri
http://hdl.handle.net/11336/45435  
dc.description.abstract
There has recently been increasing demand for better designs to conduct first-into-man dose-escalation studies more efficiently, more accurately and more quickly. The authors look into the Bayesian decision-theoretic approach and use simulation as a tool to investigate the impact of compromises with conventional practice that might make the procedures more acceptable for implementation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
First Into Man  
dc.subject
Optimal Design  
dc.subject
Bayesian Decision  
dc.subject
Dose Level  
dc.subject.classification
Farmacología y Farmacia  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Gaining acceptability for the Bayesian decision-theoretic approach in dose-escalation studies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-09T14:17:34Z  
dc.journal.volume
4  
dc.journal.number
3  
dc.journal.pagination
161-171  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Zhou, Yinghui. University of Reading; Reino Unido  
dc.description.fil
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. University of Reading; Reino Unido  
dc.journal.title
Pharmaceutical Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/pst.172  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.172