Mostrar el registro sencillo del ítem

dc.contributor.author
Olcese, Luis Eduardo  
dc.contributor.author
Palancar, Gustavo Gerardo  
dc.contributor.author
Toselli, Beatriz Margarita  
dc.date.available
2018-05-08T14:24:05Z  
dc.date.issued
2015-07  
dc.identifier.citation
Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to estimate missing AERONET AOD values based on artificial neural networks; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 113; 7-2015; 140-150  
dc.identifier.issn
1352-2310  
dc.identifier.uri
http://hdl.handle.net/11336/44388  
dc.description.abstract
In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Aod Prediction  
dc.subject
Eastern Us Region  
dc.subject
Iberian Peninsula Region  
dc.subject
Hysplit  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A method to estimate missing AERONET AOD values based on artificial neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-26T17:52:49Z  
dc.journal.volume
113  
dc.journal.pagination
140-150  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.journal.title
Atmospheric Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231015300832  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.atmosenv.2015.05.009