Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A method to estimate missing AERONET AOD values based on artificial neural networks

Olcese, Luis EduardoIcon ; Palancar, Gustavo GerardoIcon ; Toselli, Beatriz MargaritaIcon
Fecha de publicación: 07/2015
Editorial: Pergamon-Elsevier Science Ltd
Revista: Atmospheric Environment
ISSN: 1352-2310
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.
Palabras clave: Aod Prediction , Eastern Us Region , Iberian Peninsula Region , Hysplit
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.791Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/44388
URL: https://www.sciencedirect.com/science/article/pii/S1352231015300832
DOI: http://dx.doi.org/10.1016/j.atmosenv.2015.05.009
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to estimate missing AERONET AOD values based on artificial neural networks; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 113; 7-2015; 140-150
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES