Artículo
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors
Fecha de publicación:
07/2017
Editorial:
Elsevier Science
Revista:
Computer Aided Chemical Engineering
ISSN:
1570-7946
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Robust Data Reconciliation enhances the quality of variable estimates when the data set contains a moderate proportion of atypical observations. But if systematic errors that persist in time, i.e. biases and drifts, are not detected, the break down point of the estimates is exceeded and results get worse. In this work, a new methodology based on the concepts of Robust Statistics is presented to deal with this problem. The strategy computes robust variable estimates, classifies the systematic measurement errors, and provides corrective actions to avoid the detrimental effect of biases and drifts until the sensor is repaired. The performance of the methodology is evaluated for the steady state operation of linear and non-linear benchmarks. Results demonstrate that its use significantly improves the estimates accuracy
Palabras clave:
Data Reconciliation
,
Robust Statistics
,
Measurement Errors
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors; Elsevier Science; Computer Aided Chemical Engineering; 40; 7-2017; 1525-1530
Compartir
Altmétricas