Mostrar el registro sencillo del ítem

dc.contributor.author
Llanos, Claudia Elizabeth  
dc.contributor.author
Sanchez, Mabel Cristina  
dc.contributor.author
Maronna, Ricardo Antonio  
dc.date.available
2018-04-23T15:26:07Z  
dc.date.issued
2017-07  
dc.identifier.citation
Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors; Elsevier Science; Computer Aided Chemical Engineering; 40; 7-2017; 1525-1530  
dc.identifier.issn
1570-7946  
dc.identifier.uri
http://hdl.handle.net/11336/43002  
dc.description.abstract
Robust Data Reconciliation enhances the quality of variable estimates when the data set contains a moderate proportion of atypical observations. But if systematic errors that persist in time, i.e. biases and drifts, are not detected, the break down point of the estimates is exceeded and results get worse. In this work, a new methodology based on the concepts of Robust Statistics is presented to deal with this problem. The strategy computes robust variable estimates, classifies the systematic measurement errors, and provides corrective actions to avoid the detrimental effect of biases and drifts until the sensor is repaired. The performance of the methodology is evaluated for the steady state operation of linear and non-linear benchmarks. Results demonstrate that its use significantly improves the estimates accuracy  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Data Reconciliation  
dc.subject
Robust Statistics  
dc.subject
Measurement Errors  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Robust Methodology for the Sensor Fault Detection and Classification of Systematic Observation Errors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-18T15:11:14Z  
dc.journal.volume
40  
dc.journal.pagination
1525-1530  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.journal.title
Computer Aided Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-444-63965-3.50256-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780444639653502567