Mostrar el registro sencillo del ítem
dc.contributor.author
Morandeira, Natalia Soledad
dc.contributor.author
Grimson, Rafael
dc.contributor.author
Kandus, Patricia
dc.date.available
2018-04-18T16:03:08Z
dc.date.issued
2016-01
dc.identifier.citation
Morandeira, Natalia Soledad; Grimson, Rafael; Kandus, Patricia; Assessment of SAR speckle filters in the context of object-based image analysis; Taylor & Francis; Remote Sensing Letters; 7; 2; 1-2016; 150-159
dc.identifier.issn
2150-704X
dc.identifier.uri
http://hdl.handle.net/11336/42469
dc.description.abstract
The initial step in most object-based classification methodologies is the application of a segmentation algorithm to define objects. In the context of synthetic aperture radar (SAR) image analysis, the presence of speckle noise might hamper the segmentation quality. The aim of this study is to assess the segmentation performance of SAR images when no filter or different filters are applied before segmentation. In particular, the performance of the mean-shift segmentation algorithm combined with different adaptive and non-adaptive filters is assessed based on both synthetic and natural SAR images. Studied filters include the non-adaptive Boxcar filter and four adaptive filters: the well-known Refined Lee filter and three recently proposed non-local filters differing, in particular, in their dissimilarity criteria: the Hellinger and the Kullback–Leibler filters are based on stochastic distances, whereas the NL-SAR filter is based on the generalized likelihood ratio. Two measures were used for quality assessment: ρ-index and κ-index. Over-segmentation was assessed by the ρ-index, the ratio of the resulting number of segments to the number of connected components of the ground-truth classes. The accuracy of the best possible classification given on the segmentation result was assessed with ground truth information by maximizing the κ-index. A Monte Carlo experiment conducted on synthetic images shows that the quality measures significantly differ for the applied filters. Our results indicate that the use of an adaptive filter improves the performance of the segmentation. In particular, the combination of the mean-shift segmentation algorithm with the NLSAR filter gives the best results and the resulting process is less sensitive to variations in the mean-shift operational parameters than when applying other filters or no filter. The results obtained may help improve the reliability of land-cover classification analyses based on an object-based approach on SAR data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Active Microwave
dc.subject
Classification
dc.subject
Segmentation
dc.subject
Speckle Filtering
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Assessment of SAR speckle filters in the context of object-based image analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-17T19:59:08Z
dc.identifier.eissn
2150-7058
dc.journal.volume
7
dc.journal.number
2
dc.journal.pagination
150-159
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Morandeira, Natalia Soledad. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Grimson, Rafael. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Kandus, Patricia. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Remote Sensing Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/2150704X.2015.1117153
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/2150704X.2015.1117153
Archivos asociados